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A Note on Real Time Parametric
Cubic Segment Curve Generation

ABSTRACT As coordinate values are determined, we wish to add them to an array and apply an interpolation pro-
cedure to the new coordinate values of the array. That is, as the sequence is being increased, it will be interpolated
by a cubic fit. We will exhibit two procedures which limit the cubic construction to be one segment behind the last
segment of the sequence. That is the input coordinate values are no1 the end points for the cubic segment being con-
structed. Another procedure wil l include this last input coordinate value as end coordina'te values for this last cubic
segment being generated. The method of parabolic blending for the curve and swface inrerpolation originally con-
ceived by A. W. Overhauser [I]is applied as well as two procedures employing three points and one vector. As will.
be seen. these methods lend themselves to real time curve generation.

1. Introduction
During testing and sometimes during a gen-

eral running operation, i t is desirable to be able to
display a smooth curve (By a smooth curve we
mean at a given input defining point p,. the
tangent vector for the cubic segment defined
between the points p

k

q

1
and p, has the same direc -

tion as the tangent vector for the cubic segment
defined between the points p, and p,, when each
is evaluated at p,. ) that i s an interpolation o f data
as the data is being generated. This differs from
the usual problem of interpolating a given string
p

L
, . . ..p o f points since all the points are not

given at the time the interpolation is being deter -
mined. With our problem we are given the i-th
point and want an interpolation curve for the p,, . .
.,p points while the point p,+ is being computed.

"

In the classical problem of interpolation,
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spline (or B-spline) functions [2] are quite often
used for the interpolation [3]. The point informa -
tion is available for the classical problem and this
i s required in applying classical spline'theory. Since
all points are not available during real time pro-
cessing, the use o f the classical spline (or B-spline)
algorithms would be very time consuming for our
applications. That is the number of functional
operations( multiplications and additions, etc. ) rule
out consideration of this technique.

Typical o f a procedure that might be exam -
ined for real t ime applications is that of Akima [dl

which relies on local construction procedures. This
method has been discounted because o f thz
number o f operations required to compute thc
coefficients for a cubic segment.

The parabolic blending ( -or Overhauser )
procedure [l]which limits the required informa -
tion needed to generate a cubic segment i s attrac -
tive [ Fig. 1 1. The procedure wil l be seen to limit
the arithmetical operations and to minimize the
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computational speed. This procedure has in the
past been used in generating curves for CAD appli-
cations. For these applications the defining points
arc known before one generates the curve. But this
curve type i s such that it can lend itself to our
application of generation o f a curve as the point
information is supplied.

-
Another attractive procedure i s the three

points and a vector cubic segment definition
method. For the three points the vector could be
associated with the f i r s t point and a cubic segment
would be defined between the first and second
given points [ Fig. 2 1, or the vector could be asso-
ciated with the second point and the cubic segment
would be defined between the second and third
points [ Fig. 3 I.Both of these cases are considered
below. Coefficients for both of these cases can be
determined with a minimum number of opera-
tions.

I t should be noted that in the construction of
the curves of Figures 1, 2, and 3, the same input
coordinate values were used for all three figures.

2. The Information Needed To
Generate A Cubic By The Dif ferent
Procedures

Three cubic curve interpolation schemes
being discussed are:

(i) The parabolic blending (Overhauser curve)
procedure;

(ii) The three points and vector definition pro-
cedure with the vector attached to the f i rs t
point;

(iii) The three points and vector definition pro-
cedure with the vector attached to the second
point.

I f the interpolation curve between points p
i

and p
i
+, is desired, then the points p

i
-, and p

i
+,,

would also have to be known to apply procedure
(i).But to apply procedure (ii) we would need the
additional points p

i
+,and a vector which i s used to

define the tangent vector o f the cubic at the point
p. To apply procedure (iii)we would need the
additional point and a vector V which would
be used to define the tangent vector at point p..
This implies that the curve segment being gen:
erated would lag behind the input interval informa -
tion by only one interval for procedures (i)or (ii).
whereas with procedure (iii)i t would not lag at all.
We mention in passing that for the Akima pro-

cedure the points P,.~,P,-~,p,+ and p,+ would have
to be known. Hence ifthis procedure was applied,
curve segment generation would be lagging by two
points. In addition, the procedure is computation -
ally intense relative to (i),(ii),or (iii).I t i s for this
combination of factors that ti), (ii),or (iii)would
be a better choice.

3. Defining Cubic Curve Segments
by Parabolic Blending

As the name suggests, parabolic blending
involves the concept o f using blending functions
[5,6] to blend two parametrically defined sccond
degree polynomials into a cubic polynomial over an
interval. In particular, for four given points p, ,p,.
p, and p,, a second degree polynomial, p , wil l be
defined by the points p

l
, p, and p, and another

second degree polynomial, q , wil l be defined by
the points p,, p

3
, and p,. We wish to select blend -

ing functions B1 and B2 such that: (i)B1 =
Bl(t) and B2 = B2(t) arc functions of the same
parameter; (ii)the resultant vector function C(t)
= B1 p + B2 q has vector equal to p, for t= 0
and vector value equal to p, for t= 1 [ Fig. 4 1.
Overhauser [ll selected B1= ( 1 - t) and B2 = t.

Since p and q are second degree vector polynomi -
als, we can write

(1) p = p(r)= (r ’ , r , 1 ) B
and q= q(s) = ( s 2 , s , 1 ) D

where both B and D are 3x3 matrices. Writing the
parameters r and s as linear functions of t (i.e. r =
a t + b and s = c t + d ) . the resulting vector
curve C is a parametric cubic:

C(t) = (t
3
, t

2
, t, 1) A ,

where A is a 4 x 4 matrix.

If we select the r values and the s values

~ ( 0 )= P, , p(1/2) = p, and p(1) = p,

we get from equations (1) that r and s

(2) r = O S ( t + 1 ) and s = 0.5 t .
Using equations (1) we have

such that

4(0) = P, 7 q(1/2) = P, and q(1) = P,

relate to t by the equations

Since the inverse o f V i s

1; -:3 1
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2 - 4 2 PI

=I:; -;I[;:]
and similarly for the matrix , D , of equation (1)
in terms of p

2
, p,, and p, we have

Hence,

= (1-t)(r2.r,l) B + t (s2,s,1) D . Substituting
equation (2) into (3) we arrive at

(3) C(t) = (1 - t) p + t q

(4) C(t)=[t3 t 2 t 11 M

where

312 -312

0 112 0 ’
1 0 0

or

(4’) C( t )=u t3+ b t2+ c t + d ,

where

a = -112p l + 3 /2p 2- 3 / 2 p 3 + U2p 4

b = p 1 + - 5 / 2 p 2 + 2 p j + - 1 1 2 ~ 4

c = -1/2p, + 1/2p,

d = P2

(where details o f the manipulations can be found
in [1],[3],or[71). Note: One must keep in mind
that each p. i s a vector, say p = (x,, y,, z,, w.), so
that the coifficients determined fo; thk cLbids are
vectors [we are working with parametric equa-
tion SI.

In generating a complete curve, each curve
segment is defined by the use of equation (4). Spe -
cial consideration is given to the f i r s t and the last

segment. I f p
l
, p,, and p, are the first three points

generated, then to generate the cubic between p,
and p,, set p, = p, and use equation(4).If p

n
-, i s

the last point to be generated, then set p, = p
n
.,

and apply equation (4) to the points p
n

-
3
, P,.~, p,.,

and p . I t i s worth noting that for a sequence of
distin;t points ( p. not equal to p

i
+~ for any i ) that

first derivative cdntinuity at the boundary of two

adjacent cubic curve segments i s maintained, i.e, a
smooth curve is generated (see [7] for details).

4. Cubic Segments Defined B y
Three Points and A Vector

Given three points Po, P
I

and P
2
, and a vec-

tor V, a cubic segment between points Po and P,
can be defined [Fig. 5 1. L e t C(t) be the cubic
polynomial such that

C’(0) = v
and assume a parameterization such that

C(0) = Po ;

C(1) = P1 ;

C(2) = Pz.

I f

C( t ) = at3 + bt2 + ct + d

i s the cubic, then

d = Po;

c = v ;
C(1) = D + b + c + d = P, ;

C(2) = 8a + 46 + 2c + d = P 2 .

(5)‘ 1
Letting q, = P, -(c + d) and) q

2
= P, - (2 c + d)

the last two equations can be written as

Note. the inverse of the 2x2 matrix on the l e f t
side of the above expression is

Hence,

and

The coefficients a, b, c, d are seen to be easily
determined by employing system (5) and equations
(6) and (7).

To define a complete curve using these cubic
curve segments the following steps are required:
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a. For the first cubic segment the following
three steps are required:
(i)The first three points p,, p, and p, of a
sequence are given;
(ii) We assume at point p, the cubic vector
-segment CJt) to be defined has all zero

second derivative components. I f

Co(t) = at 3 + bt2 + ~t + d

i s the cubic, then by our assumption b = 0
(the zero vector), and we also have CO(0) =
p, = d. Then by solving the system

Co( 1) = a+c+d=pl

Co(2) = 8 ~ + 2 ~ + d = p z

we obtain the coefficient vectors a and c. As
this is similar to the above we have skipped
the details. Hence the cubic between the
points p, and p, i s determined.
(iii)Using the cubic coefficients o f (ii),
points between p, and p, is computed.

b. I f a cubic segment has been defined between
the points p

i
.
2

and p
i
-
l
, the following steps are

taken to determine the cubic for the seg-
ment between p

i
-, and p

i
:

(i)p
i
+ will be given;

(ii)The vector V i s determined by the cubic
that was defined between p

i
.
2

and p
i
-
l
. In par-

ticular V is set equal to the tangent vector o f
that cubic evaluated at the point ;
(iii)The three points p

i
-,,p, and p

i
+, and the

vector V determine the cubic vector
coefliciens as outlined above;
(iv) Points between p,, and p are computed.

c I f a cubic segment has been defined between
the points p,., and P,.~, and p i s to be the last
input point, then either ;f the following
methods could be used to determine a cubic
segment between p,., and p,:
(i)Use the cubic vector segment that was
defined between the points p

n
-
l

and p, and
compute points with the parameter values
varying from 1 (one) to 2 (two). [This Pro-
cedure was used in generating Figure 2. ]
(ii)A vector V is determined by the cubic
vector that was defined between pi-, and p,.,.
In particular V is set equal to the tangent
vector of that cubic vector evaluated at the
point P,.~. Then the points p

n
-
2
, p

n
-
l

and p
n

and the vector V determine a cubic vector by
the procedure to be discussed in section

1

5, below.

5. A Second Procedure Using
Three Points and A Vector

Suppose that a cubic vector polynomial has
been defined between points P

i
-
l

and P
i
. Now

given P
i
+
I
, consider the generation o f a cubic vec -

tor polynomial between P
i

and P
i
+ One way of

accomplishing this would be to use the points P
I
-,,

P., and P
i
+ and the slope vector for the point P

I

obtained from the cubic defined between P
i
-
l

and

As in the case of the preceeding section, one
is given three points P-

l
, Po, and P

I
, and a vector

V and a cubic segment is to be defined between
points Po and P

I
[Fig. 6 I. L e t C(t) be the cubic

polynomial such that

P
i
.

C’(0) = v
and assume a parameterization such that

C( - I ) = P-, ;

C(0) = Po ;

C(1) = P I .

I f

C ( t ) = a t 3+ b t 2+ c t + d

is the cubic, then

d = Po;I
c = v ;

(8) { C(-1) = - a + b + - c + d = P-, ;

C(1) = u + b + c +d = PII
Letting q, = P + (c - d) and q, = P

I
- (c + d)

the last two equations o f system (8) can be written
as

Note, the inverse of the 2x2 matrix on the le f t
side of the above expression is

Hence,

[a] - p i 2 11211411
b - 112 112 q 2

and

I
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(9) a = (-4,+ 4 2 w

(10) b = (41 + 42)/2.

The coe€ficients a, b. c, d are seen to be easily
determined by employing system (8) and equations
(9) and (10).

.- To define a complete curve using these cubic
curve segments the steps required are similar to
those outlined in section 4.

-

6. Vector Considerations For The
Three Points And Vector Construc -
tion

Because we are constructing parametric cubic
segments using a tangent vector as part o f i t s
definition during the construction technique, cau-
tion must be used [Chapter 6,4]. If the vector
magnitude is greater than the distance between
which the curve segment i s being defined, the
cubic could show a whip l ike effect[Fig. 7, 8, and 9
L

In our implementation we resolved this
dilemma by allowing for the scaling of each vector
component
by SI TV, where:

S = a scale factor;
TV = the absolute value of the component o f the
vector that i s largest in magnitude.
A more sophisticated procedure could be imple-
mented by using the factor (S * DI)/TV, where S
and TV are as above and
DI = the absolute value of the component that i s
the largest in magnitude of the vector which is the
difference of the two points between which the
cubic vector i s to be defined.
By using this last procedure and restricting S to
values between 0 and 1, the vector magnitude will
always be less than the magnitude of the distance
between which the curve segment i s being defined.
(DI could also have been selected as the distance
between the two points.)

7. Corn aring The Required

A Cubic Curve Segment
Number oP Operations to Compute

A criterion for suitability of a curve'type i s
the number of computations required to compute
points along a given curve segment. To determine
the points, the cubic vector coefficients are com-
puted to determine the expression

C(t) = a t 3 + b t Z + c t + d ;

then this expression i s used to compute coordinate
values along the curve. In each of the procedures
discussed. the difference in -computation t ime will
be related to the determination of the coefficients.
With this in mind one needs only to consider the
operations involved in defining the vector
coefficients to make a comparison of the different
procedures. In comparing the number of opera -
tions performed to define vector coefficients for
the above three cases, one needs only to consider
one vector component. That is, one would solely
need to determine the number of operations of the
first vector component of each vector coefficient.
With this in mind:

(ii)

(iii)

One observes that for each cubic component
for the Overhauser parabolic blending case
there are nine multiplications and seven addi-
tions required to compute the coefficients.

For the three points and a vector case dis-
cussed in sectoin 4, the coefficients for one
component of a cubic segment are deter -
mined by six multiplications; the sum of the
additions and subtractions wil l be eight (these
numbers include the computations to corn -
pute the vector V). One could also include
the multiplication of the scaling mentioned in
section 6. This would bring the number of
multiplications to seven or eight depending
upon how you wished to include the S term
being divided by the TV term.

For the three points and a vector case dis-
cussed in sectoin 5, the coefficients for one
component o f a cubic segment are deter -
mined by four multiplications and divisions;
the sum of the additions and subtractions wil l
be eight (these numbers include the compu -
tations to compute the vector V). As men -
tioned in (ii)the multiplications of the scal -
ing mentioned in section 6 could also be
included bringing the number of multiplica -
tions to five or six depending upon how you
wished to include the S term being divided
by the TV term.

If one had considered the Akirna [41 pro -
cedure, one would have found that for each
cubic component the sum of the required
multiplications and divisions would have
been twelve and the sum of the additions and
subtractions would have been fourteen.

Continued on Page I74
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Figure 1 A cwye generated using the parabolic blending
procedure.

Figure 4 Four points defining a parabolic blend between
the second and third points are being displayed. Also dis-
played is the cubic segment defined by these points.

d 0

Figure 2 A curve generated using three points and a vec-
tor procedure. The vector defines the tangent value at the
first point.

Figure 5 Three points and a vector defining a cubic
curve segment between the first and second points as out-
lined in Section 4 are being displayed. Also displayed is
the cubic segment defined by the points and the vector.

0

Figure 3 A curve generated using three points and a vec-
tor procedure. The vector defines the tangent value at the
secondpoint.

Figure 6 Three points and a vector defining a cubic
cwye segment between the second and thirdpoints as out-
lined in Section 5 are being displayed. Also displayed is
the cubic segment defined by the points and the vector.
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Figure 7 An example using the procedure of Section 5
and multiplying the components of the defining vector V
by SlW, where S is equal to I S is displayed.

If speed i s the sole criterion for selection,
then one of the three points and a vector pro-
cedure or something similar to them would be
selected. One will note that when using the
second three points and a vector procedure out-
lined above, at times a natural looking curve is not
generated because of the lack of control of the
slope vector at the point P, of section 5.With the
other mentioned procedures the last point supplied
i s used as part of the procedure to define the slope
vector value for the preceeding point. The curve
generated by the Overhauser parabolic blending
case has more aesthetic appeal, but has a slightly
greater computational time. The proper choice of a
curve type will depend on one's application.

References
1.

2.

3.

Figure 8 An example using the procedure of Section 5
and multiplying the components of the defining vector V
by SITV. where S is equal to 3s is displayed. (The same
input points as in Figure 7 are used.)

4.

5.

6.

7.

Overhauser, A., "Analytic Definition of
Curves and Surfaces by Parabolic Blending, "
Technical Report No. SL68-40, Ford Motor
Company Scientific Laboratry, May 8. 1968 .
deBoor, C.. A Practical Guide to Splines,
Springer -Verlag New York Inc., N e w York,
N. Y. , 1978.

Rogers,D., F.,and Adams, J., A., Marhemari -
cal Elements for Computer Graphics ,
McG raw -Hil l Book Cornpan y,New
York, 1976.

Akirna, H., " A New Method of Interpolation
and Smooth Curve Fitting Based On Local
Procedures, " Journal o f the Association for
Computing Machines, Volume 17, Number
4, October 1970, pp 589-602.

Mortenson, M. E., Geometric Modeling, John
Wiley and Sons, Inc., Somerset, N e w Jersey,
1985.

Forrest, A.R., "Curve and Surfaces for Com -
puter Aided Design, " University of Cam-
bridge, PhD Thesis, July 1968.

Brewer, J.A.,"Th ree Dimensional Design by
Graphical Man -Corn puter Corn munication, "

Purdue University, PhD Thesis, May, 1977.

0

Figure 9 An example using the procedure of Section 5
and multiplying the componenrs of the defining vector V
by SJTV, where S is equal to 50 is displayed. (The same
input points as in Figure 7 are used.)

Contribution of the National Bureau of Standards.

Not subject to copyright.

174 INTELLIGENT INSTRUMENTS & COMPUTERS July 1987


